

FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester II

Course Code: 102320207

Course Title: Additive Manufacturing & Tooling

Type of Course: Program Elective IV

Course Objectives: This course addresses the principle of various AM techniques and its concept, scope, building strategies, post-processing and areas of applications along with different rapid tooling methods and reverse engineering

Teaching & Examination Scheme:

Conta	ntact hours per week Course		Examination Marks (Maximum / Passing)					
Locturo	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutorial	Flattital		Theory	J/V/P*	Theory	J/V/P*	TULAT
3	0	2	4	30 / 15	20 / 10	70/35	30 / 15	150 / 75

* **J**: Jury; **V**: Viva; **P**: Practical

Detailed Syllabus:

Sr.	Contents	Hours		
1	Introduction:	4		
	Traditional Prototyping Vs. Rapid Prototyping (RP), Classification of Rapid			
	Manufacturing Processes: Additive, Subtractive, Formative, Generic RP process, STL			
	file Generation, Build File Creation, Part Construction, Part Cleaning and finishing,			
	Process Strength and its limitations.			
2	CAD Modelling and Data Processing:			
	CAD model preparation, Data interfacing: formats like STL, SLC, CLI, RPI, LEAF, IGES,			
	HP/GL, CT, STEP, conversation; Part orientation and support generation, Support			
	structure design, direct and adaptive slicing, Tool path generation.			
3	Liquid based systems:			
	Stereo lithography apparatus (SLA): Models and specifications, process, working			
	principle, photopolymers, photo polymerization, layering technology, applications,			
	advantages and disadvantages.			
	Solid ground curing (SGC): Models and specifications, process, working, principle,			
	applications, advantages and disadvantage, Rapid Freeze Prototyping (RFP), Solid			
	Object Ultraviolet-Laser Printer (SOUP) process & Two Laser Beams process.			

Page **1** of **3**

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

4	Solid based systems:	6
	Laminated object manufacturing (LOM): Models and specifications, Process,	_
	Working principle, Applications, Advantages and disadvantages, Case studies. Fused	
	Deposition Modeling (FDM): Models and specifications, Process, Working principle,	
	Applications, Advantages and disadvantages, Benchtop System: Process, Working	
	principle, Applications. Multi-Jet Modeling System.	
5	Powder Based Systems:	6
	Selective laser sintering (SLS): Models and specifications, process, working	
	principle, applications, advantages and disadvantages, Three dimensional printing	
	(3DP): Models and specification, process, working principle, applications,	
	advantages and disadvantages, Electron Beam Melting (EBM): Process, Working	
	principle, Applications, Laser Engineered Net Shaping (LENS) & Electron Beam	
	Melting process	
6	Rapid Tooling:	6
	Indirect Rapid Tooling - Silicone rubber tooling, Aluminum filled epoxy tooling,	
	Spray metal tooling, etc.	
	Direct Rapid Tooling - Direct AIM, Quick cast process, Direct Metal Laser Sintering	
	Tooling (DMLS) Rapid Tool, ProMetal, Laminate tooling, soft tooling vs hard tooling.	
7	Reverse Engineering:	2
	Basic concept, Digitization techniques, Model Reconstruction, Data Processing for	
	Rapid Prototyping, Reverse Engineering (RE) Methodologies and Techniques,	
	Selection of RE systems	
8	Errors in AM Processes:	3
	Pre-processing, processing, post-processing errors, Part building errors in different	
	additive manufacturing processes	
9	Additive Manufacturing Applications:	2
	Design, Engineering Analysis and planning applications, Medical Applications of RP,	
	Forensic Science and Anthropology, Arts and Architecture, Aerospace Industry,	
	Automotive Industry, Jewellery Industry, Coin Industry etc.	

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks					S	R: Remembering; U: Understanding; A: Application,
R	R U A N E C		C	N: Analyze; E: Evaluate; C: Create		
10	10	30	20	20	10	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

-101	
1	Rapid Prototyping: A Brief Introduction, Ghosh A., Affiliated East West
2	Rapid Prototyping Technology: Selection and Application, Kenneth G. Cooper, CRC Press
3	Rapid Prototyping: Principles and Applications, Chua Chee Kai, Leong Kah Fai, Lim Chu -Sing,
	World Scientific
4	Rapid Prototyping theory & practice, Ali K. Kamarani, Manufacturing System Engineering
	Series, Springer Verlag
5	Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing,
	Gibson I, Rosen D W., and Stucker B, Springer

Page 2 of 3

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in

6	Rapid Prototyping: Principles and Applications in Manufacturing, Noorani R, John Wiley &
	Sons
7	Rapid Tooling: Technologies and Industrial Applications, Hilton P, Jacobs P F, CRC press

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Acquire knowledge about the fundamentals for additive manufacturing	10
	with compare to traditional manufacturing	
CO-2	Understand and use techniques for processing of CAD models for rapid	15
	Prototyping	
CO-3	Understand the operating principles, capabilities, and limitations of	50
	liquid based, solid based & powder based additive manufacturing	
	system	
CO-4	Apply the proper tooling methods for rapid prototyping process.	15
CO-5	Discover the rapid prototyping techniques for reverse engineering with	10
	different applications	

List of Practicals / Tutorials:

1	Introduction to different additive manufacturing processes	
2	Study of different data formats	
3	Generating STL files from the CAD Models & Working on STL files	
4	Study of Slicing Strategies	
5	Prepare a CAD model with complex geometry and study effect of slicing parameters on final	
	product manufactured through RP	
6	Study & explore Liquid based additive manufacturing system	
7	Study & explore solid based additive manufacturing system	
8	Study & explore powder based additive manufacturing system	
9	Rapid tooling: future of tooling	
10	Role of reverse engineering in additive manufacturing systems	
11	Applications of additive manufacturing systems with case study	
11	Applications of additive manufacturing systems with case study	

Supplementary learning Material:

1 https://nptel.ac.in/courses/112/104/112104265

Curriculum Revision:				
Version:	1			
Drafted on (Month-Year):	Apr-20			
Last Reviewed on (Month-Year):	Jul-20			
Next Review on (Month-Year):	Apr-22			

Page 3 of 3

Opp. Shastri Maidan, Beside BVM College, Vallabh Vidyanagar, Dist: Anand, Gujarat - 388120 (O): 02692-238001 | Email: adminoffice@cvmu.edu.in | www.cvmu.edu.in